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INTRODUCTION.

The following paper is a dissertation originally presented by the author to the University
of Goettingen. It was intended principally for the use of mathematicians and physicists. The
author is pleased to note that the paper has aroused interest in other circles, to the end that
the National Advisory Committee for Aeronauties will make it available to a larger cirele in
America. The following introduction has been added in order to first acquaint the reader
with the essence of the paper.

In the following development all results are obtained by integrating some simple expressions
or relations. For our purposes it is sufficient, indeed, to prove the results for a pair of small
elements. The qualities dealt with are integrable, since, under the assumptions we are allowed
to make, they can not be affected by integrating. We have to consider only the relations

between any two lifting elements and to add the effects. That is to say, in the process of inte--

grating each element occurs twice—first, as an element producing an effect, and, second, as an
element experiencing an effect. In consequence of this the symbols expressing the integration
look somewhat confusing, and they require so much space in the mathematical expression that
they are apt to divert the redder’s attention from their real meaning. We have to proceed up
to three dimensional problems Each element has to be denoted twice (by & Latin letter and
by a Greek letter), occurring twice in a different connection. The integral, therefore, is sixfold,
six symbols of integration stending together and, accordingly, six diﬂ’erent—ials (always the same)
standing at the end of the expression, requiring almost the fourth part of the line. The meaning
of this voluminous group of symbols, however, is not more complicated and not less elementary
than a single integral or even than a simple addition.

In section 1 we consider one aerofoil shaped like a straight line and ask how all lifting
elements, which we assume to be of equal intensity, must be arranged on this line in order to
offer the least drag.

If the distribution is the best one, the drﬁ.a can not be decreased or increased by transferring
one lifting element from its old position () to some new position (b). For then either the
resulting distribution would be improved by this transfer, and therefore was not best before, or
‘the transfer of an element from (§) to (a) would have this effeet. Now, the share of one element
in the drag is composed of two parts. It takes share in producing a-downwash in the neighbor-
hood of the other lifting elements and, in consequence, a change in their drag. It has ifself a
drag, being situated in the downwash produced by the other elements. :

L 2
Fg f

Considering only two elements, Fig. 1 shows that in the case of the lifting straight line the
two downwashes, each produced by one element in the neighborhood of the other, are equal.
For this reason the two drags of the two elements each produced by the other are equal, too,
and hence the two parts of the entire drag of the wings due to one element. The entire drag

876
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produced by one element has twice the value as the drag of that element resulting from the
downwash in its environs. Hence, the entire drag due to one element is unchanged when the
element is transferred from one situation to a new one of the same downwash, and the distribu-
tion is the best only if the downwash is constant over the whole wing.

In sections 2 to 6 it is shown that the two parts of the drag change by the same value in
all other cases, too. If the elements are situated in the sume transverse plane, the two parts are
equal. A glance at Fig. 2 shows that the downwash produced by (1) at (2), (3}, (4), and (5)

(= . -4}
it =
£
(3] 5}
- N
fig.&@

is equal. But then it also equals the downwash due to (4), say, produced at (1). This holds
true even for the component of the downwash in the direction of the lift if the elements are nor-
mel to each other (Fig. 3.); for this component is proportional x.y/r?, according to the symbols

i S—
L mga

of the figure. Hence, it is proved for lift of any inclination, horizontal and vertical elements
being able, by combination, to produce lift in any direction.

There remains only the question whether the two parts of the drag are also equal if the
elements are situated one behind the éther—that is to say, in different longitudinal positions.
- They are not; but their sum is independent of the longitudinal distance apart. To prove
this, add in Fig. 4 to.the lifting element (2) 4 second inverse lifting element (3} with inverse

linear-longitudinal vortices in the inverse direction. -The reader observes thut the transverse
vortices (2) and (3) neutralize each other; the longitudinal linear vortices, however, have the
same sign, and all four vortices form a pair of vortices nmmng from infinity to mﬁmt) The
drag, produced by the combination of (1) and this pair, is obviously independent of the longi-
tudinal positions of (1) and (2). But the added element (3) has not changed the drag, for (1)
and (3) aro situated symmetrically and produce the same mutual downwash The dlrection
of the lift, however, is inverse, and therefore the two drags have the inverse sign, and their sum
is zero.

If the two hftmg elements are perpendicular to each other (chapter 5), a similar proof can
be given.

Sections 6 and 7 contain the conclusions. The condition for & minimum drag does not
depend upon the longitudinal coordinates, and in order to obtain it the downwash must be
assumed to be constant at all pomts in a transverse plane of a corresponding system of nero-
foils. This is not surprising; the wings act like two Jimensional objects accelerating the air
passing in an infinite transverse plane at a particular moment. Therefore the calculation
leads to the consideration of the two dimensional flow about the projection of the wings on a
transverse plane.
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Section 8 gives the connection between the theory in perfect fluids and the phenomenon
in true air. It is this connection that allows the application of the results to practical questions.

1. THE LIFTING STRAIGHT LINE.

A system of aerofoils moving in an incompressible and frictionless fluid has a drag (in the
direction of its motion) if there is any lift (perpendicular to the direction of its motion). The
megnitude of this drag depends upon the distribution of the lift over the surface of the aerofoils.
Although the dimensions of the given system of aerofoils may remain unchanged, the distribu-
tion of the lift can be radically altered by changes in details, such as the aerofoil section or the
angle of attack. The purpose of the investigation which is given in the following pages is to
determine (a) the distribution of lift which produces the least drag, and () the magnitude of this
minimum drag.

Let us first consider a single serofoil of such dimensions that it may be referred to with
sufficient exactness as a lifting straight line, which is at right angles to the direction of its flight.
The length or span of this line may be denoted by I. Let the line coincide with the horizontal,
or r axis of a rectangular system of coordinates having its origin at the center of the aerofoil.
. The density of the lify

dd
v - - (n

Al=
where A, the entire lift from the left end of the wing up to the point z, is generally a function of
z and may be denoted by f (x). Let the velocity of flight be v,.

The modern theory of flight! allows the entire drag to be expressed as a definite double
integral, if certein simplifying assumptions are made. In order to find this integral, it is neces-
sary to determine the intensity of the longitudinal vortices which run from any lifting element
to infinity in a direction opposite to the direction of flight. These vortices are generally
distributed continuously along the whole serofoil, and their intensity per unit length of the
serofoil is

| dd’
where p is the density of the luid. Now, for each lifting element dr, we shall caleulate the down-
wash w, which, in accordance with the law of Biot-Savart, is produced at it by all the longi-
tudinal vortices. A sm,,le vortex, beginning at the point z, produces at the point z=¢ the
downwash

1 1

dw=m - d4" - =z (3)
Therefore the entire downwash at the point £ is
i
1 A’ 1
U= I & =™ )

-

The integration is to be performed along the aerofoil; and the principal value of the integral is

to be taken at the point z=¢. This rule also applies to all of the following integrals. Hence it

follows that the drag according to the equation

iV_ o w o,
Tow=2. 4 (5)
i _ o
by L , . :
- 7 f . Ad (&)

I See L. Prandtl, Tragfgeltheorie, I. Mitteilung. Nachrichten der Ges. d. Wiss. zu G6ttingen, 1919,
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or, otherwise expressed,

@pﬁf LCY f(f)dwd; - ®)

f' here signifies the derivative of f with respect to z or £ The entire lift is represented by

+4 :
A= ff(:c)da: (7

'2’

Hence the solution of the problem to determine the best distribution of lift depends upon
the determination of the function f so that the double integral

l

= f f M (8)
shall have a value as small as possible; while at the same time the value of the simple integral
+5 T ' -
Ja= [ @)dz=const. .(9)
L
2L .
is fixed. ' )
The first step towards the solution of this problem is to form the first variation of J,
+4 +4
f{af()dxff(s) } f{af,(s)dgfﬂx) d (10
- 1

The second integral on the right side of (10) can be_reduced to the first. By exchanging the
symbols z and £ and by partial integration with respect to z, considering 1 (&) as the integrable
factor, there is obtained

f{af'(s)dz f ﬂ—dx}—— f b/ @)z d f S “”ds (11)

_'2' '2'

The second member disappears since f=0 at the limits of integration.? I‘urther, the right
hand part of (11)

d f(x)
9: EE

'5'

upon substitution of the new ‘variables z and t=z—¢ for z and ¢, is transformed into
1

J'f(a: D g

T+

1If this were not truse, there would be infinite velpolties at these polnts.
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Now

ff(z D = (2) f( Z)Lff'(z D

:+'“' = § ..: :+'2'

or, since f disappears at the limits of integration,

f(z t)- flz—8
4 dt— f it

:+1r =+1f

which, upon the replacement of the original variables, becomes

+
e

f(

o

dt

""‘"a

so that, finally,

+4 +,:,-
f{af' ©i [[Ea]

faf( )dz } | (12)

=1 -+ -5
Substituting this in (10) there finally results
_ ) s
5], = 275 1 (2)dz 'Z;T(Ei e ' (13)
' 4 L

From which the condition for the minimum amount of drag, taking into consideration the
second condition (9), is

+3— :
® _
fe——a: dE+A=0 (14)

or, when equation (4) is taken into consideration
1p=const. =, (15)

The necéssary condition for the minimum of drag for e lifiing straight line is that the douwn-
wash produced by the longitudinal vortices be constant along the entire line.

That this necessary consideration is also sufficient results from the obvious meaning of
the second variation, which represents the infinitesimal drag produced by the variation of the
lift, if it alone is acting, and therefore it is always greater than zero.

2. PARALLEL LIFTING ELEMENTS LYING IN A TRANSYERSE PLANE.

The method just developed may be applied at once to problems of & more general nature.
If, instead of a single aerofoil, there are several serofoils in the same stra.lght line perpen-
dicular to the direction of fhght only the limits of integration are changed in the development.
The integration in such cases is to be performed along all of the aerofoils. However, this is
nonessential for all of the equations and therefore the condition for the mm.lmum drag (equa-
tion 15) applies to. this entire system of aerofoils.



380 . REPORT NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS.

Let us now discard the condition that all of the lifting lines are lying in the same straight
line, but retain, however, the condition that they are parallel to each other, perpendicular tv
the line of flight as hefore, and that they are all lying in a plane perpendicular to the line of
flight. Let the helght of any lifting line be designated by z or {. Equation (3) transforms into
a similar one which gives the downwash produced at the point x, 2 by the longitudinal vortex
beginning on the lifting element at the point {:

1 , E—z
dw=g A4 i T o

- (3a).

., The expression, which must now be a minimum, is

1=[[[4rma] - 160 gopiTmpdeds (80)

with the unchanged secondary condition

J,= ff (z, 2) dz=const. (9a)

These integrals are to be taken over all of the aerofoils. .
This new problem may be treated in the same manner as the first. ,

E—z
-2+ (T—e)°

is always to be substituted for E_i:_c - It may be shown that this substitution does not

affect the correctness of e_quations (10)-to (15). Therefore .
w = const. =15, (15a)

is again obtained as the necessary condition for the minimum of the entire drag.

Finally, this also holds true for the limiting case in which, over a limited portion of the
transverse plane, the individual aerofoils, like venetian blinds, lie so closely together that
they may be considered as & continuous lifting part of a plane. Including zll ceses which
have been considered so far, the condition for a minimum of drag can be stated:

Let the dimensions of a system of aerofoils be given, those in the direction of flight being small
in comparison with those in other directions. Let the lift be everywhere directed vertically. Under
these conditions, the downwash produced by the longitudinal vortices must be uniform at all points
on the aerofoils in order that there may be ¢ minimum of drag for a given total lift.

3. THREE DIMENSIONAL PARALLEL LIFTING ELEMENTS.

The three-dimensional problem may be based upon the two-dimensional one. Let now
the dimensions in the direction of flight be considerable and let the lifting clements be dis-
tributed in space in any manner. Let y or 4 be the coordmates of any point in the diree-
tion of flight. For the time being, all lifting forces are assumed fo be vertical.

The calculation of the density of drag for this case is somewhat more complicated than in
the preceding cases: Consideration must be given not only to the longitudinal vortices, which
are treated as before, but also to the transverse vortices which run perpendicular to the lift at
any point and to the direction of flight. Their intensity at any point where there is a lifting
element is . o _

r=d'oef (4,9

The density of drag, W*now has two components, W, and W,, the first being due to the trans
verse vortices and the second to the longitudinal vortices.
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For the solution of the present problem only the total drag of-all lifting elements
W= f Wdr

is to be considered. In the first place it will be shown that the integral of those parts of the
density resulting from the transverse vortices

Wl=f W,/ dz

does not contribute to the total drag. A small element of one transverse vortex of the length dr
at the point (z, ¥, 2) produces at the point (¢, 9, {) the downwash

dw=

17—y
Trny 7 J @B A - (18)

where
P=(E—2)*+ (g —y)*+ (T —2)%
Therefore :

1 — B
W1=4rpunﬂfff (I! y! Z) -f (E: 1, ;_) ,]7?/ d.tdz. i (17)

This integration is to be extended over all the aerofoils. It is possible to write this expression
in such a manner that it holds for & continuous distribution of lift over parts of surfaces or in
space. Thisis true, moreover, for most of the expressions in this paper. Now, exchanging the
variables z, ¥, 2, for £, 4, {, in equation (17) does not change the value of the integral, since the
symbols for the variables have no influence on the value of a definite integral. On the other
hand, the factor (y—y), and therefore the integral also, changes its sign. Hence

W,=—-W,=0 ' (18)
W= T.. . 19)

Therefore the entire drag may be calculated without taking into consideration the transverse
vortices.

The method of calculating the effect of the longitudinal vortices can be greatly simplified.
At the point (£, 7, {) that part of the density of drag resulting from a longitudinal vortex begin-
ning at the point (z, ¥, 2) is

and, as stated,

W= @m0 @y -vdz (20)
where . _
d d
f=gptiresp. &I
and

¢=_II;JE—;—Ids;t’=(E—x)’+(n—8)’+ 22 (21)
The entire drag is ’

W= [ Wt [0 0 F @y, 2 vdds. (22)

Now, in the double integral (22) the variablesz, ¥, 2 may be exchanged with £, 4, {, as before,
without affecting the value of the definite integral. Partial integration may then be performed
twice, first with respect to £ and then with respect to z. The substitution resultsin

=;;;fff (v, 2 F (&, §) pdad (23)
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¢ is obtained from ¢ upon the exchange of variables. Its valueis therefore
E":‘i 2:_—_)';‘ ds'_’ 2 | H 2 ’
ir) § @8 P=(E—-2)’+ -y + -2 (24)
7
When partially integrating with respect to d¢, the integrable factorisf’ (¢, 4, {)
W= _'_z—fff (E; m f) T ‘#f (I, Y, 2) dIdE ’ (25)
Y'P dt

In the subsequent partial integration with respect to dz, the integrable factor is gz P= —% I

W= | [ 7 &n 05 @0, 2 pauct. " (28)
Finally, by addition of (22) and (26}, there is obtained

2 W={;:-_3‘;fff (E: 1, ) f, (37, y,_z) (ll/—-\z) dzdt. (27)

§ =y-+»—s may now be substituted in (24) for the variable of integration s. Then ¢ changes to
t, and with the exception of the sign the integrand in (21) agrees with the resulting one in (22)

- 1 (x—E& o :
b=z Fa (28)
v .
Subtracting (28) from (21) there results finally
L ke
— 1 —_—
e (29)

— 00

Hence, ¢ —¢ and therefore the entire right side of equation (22) is seen to be independent of the
longitudinal caordinates y of the lifting elements. :

Therefore the entire resistance of a three-dimensional system of aerofoils with parallel lifting
elements does not depend upon the longitudinal positions of the lifting elements. '

4. LIFTING ELEMENTS ARBANGED IN ANY DIRECTIONS IN A TRANSVERSE PLANE.

The problem considered in section 2 can also be generalized in another way. For the present
the condition that ull lifting elements be in one transverse plane may remain. However, they
need no longer be parallel, and the lift may be due to not only a great number of infinitesimal
lifts. 24 but also to similar transverse forces dB. In the first place let the direction of all lifting
elements be arbitrary, but such that there is a minimum drag, and let this direction be an
unknown quantity to be determined.

In the present problem it is desirable to consider a continuous distribution of lift over given
areas instead of lines. The last case can be deduced from the first at any time by passing to
the limit. - : -

Let A’ =1z, 2) be the density of the vertical lift per unit area, and B’ = F(z, 2) the density
of the lateral force per unit area. The lateral force is considered positive when acting in the
positive direction of the X-axis. -Then the density of the transverse vortices has the com-

ponents 51—23 A’ and —1713-9 B’. The density of the langitudinal vortex is the divergence of the

(]
. 1 /d’ @B’ T . .
density of the transversal vortex, or b -d;—-ag). The longitudinal vortices beginning
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at the point (z, 2) therefore produce &t the point (¢,$) the downwash and the transverse velocity

1 (dA’ B t—z. |
tom s (T ) o2 (@b)
1 qaA dB’ =

According to the above, the density of the drag is
dW= A’ dzd’z-l-B’ cl.rdz ' (5b)

With these symbols there results for the total drag the expression

V=gl [ [ [7 o r o 5E wtatets— [ [ [ [Fr @) Fef i astedec+ @0)

[[[ [ wa FensE ddeasas— [ [ [ [7 @ @o 852 aaaist]

All of these integrals are to be taken over all of the lifting surfaces. Now the first two
integrals have forms corresponding to the integral in (8), and therefore there is a possibility of
substituting (12) for these. A similar relation also holds for the last two integrals. For exam-
ple, the variation of the third integral is

[ [ (@) F &) 28 dodadids =

f fff[&f " (2,2)- F (£2) ?%;‘l'f' (z,2) 8F (£,8) z—:,—f rdzdidy’ (31)

Now in the first term on the right-hand side the variables x and z may be exchanged with £

and ¢. It may then be partially integrated with respect to d¢, the mtegrable factor bamg df' ().
This gives

[[[[or war Fen 58 datatsas=— [ [ [s7 @) § F ) 552 dndetsts (a2

This may be partially integrated with respect to dz, the integrable factor being

dt-z__di-z
dz

dt
ffff‘sf' (z,2) F (&) r,;. dxdzdids = —fJ ff&f(z,g‘) F’ (z,2) — % dadedtdr (33)

Hence the first term of the variation of the third integral of (30) can be transformed into the
second term of the variation of the fourth integral of this equation. In a similar manner the
two other terms may be transformed into each other. It is therefore demonstrated that the
variation of the entire drag may be written

sW=2[fof-w-dzdz+2[ (6 F-u-dzdz (13b)
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Two problems of variation can now be stated. In the first place limited parts of the surfaces
may be at our disposal, over which the vertical lift 4 and the horizontal transversal force B
may have any distribution. Only the total lift

A=[[f (z,2) dzdz=const. (9b)

will be given in this case. —
Then ,
' w=const. =w,; u=o0 (15b)
is the condition for the least drag. :
If, however, the lifting parts are similar to lines, there is generally one other condition to
fulfill. Tt is then required that the lift disappear everywhere along the direction of the acr ofoﬂs.

That is to say,

fsin f—FcosB=o0 (34)

where 8 is the angle of inclination of the aerofoil to the horizontal X-axis. In order to add the
new requirement (34) a second Lagrange constant u is introduced. The condition for the least
drag is now

[ — - If__ -
‘w+)\+co—sﬁ—0, sin B ) (34a)
and after the elimination of & .
’ w cos B+ u sin B=w, cos : : {15¢)

the constant-2 A being replaced by —w,, as before. In words:

If all thtmg elements are in one transverse plane, the component of the velocity perpendwular
to the wings, produced by the longitudinal vortices, must be proportional, at all lifting elements, to
the cosine of the angle of lateral inclination.

5. LIFT DISTRIBUTED AND DIRECTED IN ANY MANNER.,

The results obtained previously can be generalized not only for lifting elements distributed
in a transverse plane but also for lifting elements distributed in any manner in space. That
part of the tatal drag resulting from the transverse vortices is, in the general case

Fmgaa [ [ [ [ [ [f @ v o7 @n 0" drayteasnas
[[[[[[rasaren ;)_;dedydzd;d,,d;]

Both terms have the same form as the integral in (17). The demonstration for (17) therefore
applies to both. In the general case also the total drag can be calculated from the longitudinal
vortices without taking into consideration the transverse vortices:

47er Ufff f fﬂx, ¥, 2) f (& m, £) ¥ dadydzdedndg
+ J fff f fF (,y,2) F (&1, ¥, dedydedidndt

_f f f f f J'f(’:’ v,2) F’ (&, n, ) ¥, dedydedidnd; (22a)

~[[[[[[Feyar e, ctydadean |

f"-—ds, r=(t— x)’+(n 8§+ (F—2)?

—2
Ef_zﬂ ds
¥

(17a)

In this as in (20),
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The first two terms in (22a) have the same form as the right-hand side of (22}, and the same
conclusions are therefore valid for each. It can be proved directly for (22a) as for (22) that
each of the two double integrals is independent of the longitudinal coordinates of the lifting
elements. This proof can now be extended over the last two integrals of equation (22a).

The third integral, after changing the variables, becomes

fffffff ('Ir Y, 2‘) Fr (E; 1, §') ‘I’1 irddedEdnd§= ) (35)
JIITf &m0 F (x5, 9, 2) ¥, dedndidedyde -

where

- !
2 Saiarve) E % ds; = (-2 4 (2—9)*+ (F—2)? .
Y :

Now, let '’ be_ chosen as the integrable factor and be partially integrated with respect to z.
JISSIS% @ w2 B @, 8 idedydaddnds = (36)
JIISSS7 @m0 F @y, ) g Vudtdndsdodydz.

As in the previous cases, the second integral to be expected vanishes since f as well as F
disappear &t the limits of the integration. Next 1[:1, %@ischosen asthe integrable factor
and partially integrated with respect toz. By 1[1,, by analogy, is meant

_ 1 Pr—z
\[’z= "EJ T ds
r
[[I[fF @y 2 F (& n, §) vdedydedidnds = . -
SIS &2 0 F @, 2) budidndidrdyde.

Now ¢, may be transformed, the variable s in the defining equation being replaced by 7+y—s.
The result is that

b f E2 gy, B (a4 (1 o)t (e
¥

It.is seen that the integrand agrees with that of the defining integral ¢,. Therefore, and since
the ri,:,ht-ha.nd side of (37) contains the same function under the double integral as the fourth
turn in (22a), this fourth term can be combined with the transformed third member. This
gives

fffffff (z,y,2) F' (& 0, §) ¢ dzdydzdidadi + (38)
SITSISF Gy, 2) G 0, ©)-dudedydedidndg =
ffffffF (I) Y, z) f’ (E: M, f)(‘{’z_;z) ird'ydzdsdqd;'

1 +m
‘x"z‘"‘x['z:}g_f ?—;_E ds;

¥, —¢, and therefore the two sides of (38) are independent of y. This is therefore demon-
strated for the whole right-hand side of (22a). ’
20167—23——256

where
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In general it can therefore be said: :

The total resistance s always independent of the Zongztudmal coordinates of the lifting elements.

And further:

The most favorable distribution of the l@ft, with reference to the total drag, occurs when this 1s
also the case for the projection of the lifting elements on a transverse plane.

That is to say,ell of the lifting elements are projected on & plane perpendicular to the
direction of flight, and any element so obtained has a'lift equal to the sum of the lifts of all lifting
elements projected onto it.

6. DETERMINATION OF THE SOLUTIONS.

The previous démonstrations show that the investigation for the distribution of lift which
causes the least drag is reduced to the solution of the problem for systems of aerofoils which are
situated in a plane perpendicular to the direction of flight. In addition, the condition for least
drag (15¢), which becomes the condition of uniform downwash (15) if the lift is vertical, leads
to a problem which has often been investigated in the theory of two-dimensional flow with a
logarithmic potential The flow produced within the lifting transverse plane by the longitudinal
vortices omgmatmg in it is, indeed, of this type. Ifach such vortex produces a distribution of
velocity such as is produced by a two-dimensional vortex of half its intensity, and the whole
distribution of velocity is obtained by adding the distributions produced by the longitudingl
vortices. The potential flow sought is determined by the condition of (15¢). Let it be com-
bined with the flow of constant vertical upward motlon 0=y The resulting fAow salisfies
the condition at the boundaries

@ cos B+pusin §=0 (39)

and.there results, for the case of lifting lines:

The two dimensional potential flow is of the type that encircles the lifting lines, and at a great
distance the velocity is directed upwards and has the value w= —w,. _

Within lifting surfaces the velocity is zero according to the condition (15b), and the fluid
therefore flows around the contour. _

The intensity of the longitudinal vortices at any pomt is twice the rotation of the two
dimensional flow. In the case of the lifting lines, therefore, the density of the longitudinal
vortices is double the discontinuity of velocity from one side to the other. The intensity of the
transversal vortices is determined by integrating the longitudinal vortices along the acrofoils
and therefore equals twice the difference of the veloclty-mtegral produced on the two sides of
the aerofoil. Now the integral of the velocity produced is identical with the potential and
hence it appears:

The density of the lift perpendicular to the lifting line is propartwnal to the discontinuity qf
potential ¢, —¢,, and has the value . . .

, JA—'=+B'2'=2vop'<¢;—¢;) o U (0)
Hence the total lift obtained by integrating over all aerofoils is )
A=20pf (o —p)dz (41)

Sometimes a transformation of this equation is useful. In order to obtain it, suppose that
all of the lifting lines are divided into small parts. Then, on the two ends of each lif ting clement
there begin two inverse longitudinal vortices, the effect of which on a distant point is that of a
double vortex. Their velocity-potential ¢ and their stream function ¢ may be combined in the
complex function ¢ +1p, and, not considering the existence of a parallel flow, which is without
any importance in the calcu_lation, this complex function has the form for a lifting line,

dA+1dB
2—2,

Y +1ip) = (42)
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where z represents z + 1y and 2z, =z, +1y,, 7, and ¥, being the coordinates of the lifting tlements of
the line. For & lift distributed over areas a similar equation can be formed. The integration of

(42) gives 241 idB
Vip= | LS 2 (422)
(]
Now the residuum of the integrand at infinity is 4.4 +idB and therefore the residuum of the
integral is A+4B. Therefore the expression can be written.

A =2v,R [Res(y +1ip)] . (41a)

where the last part means the real part of the residuum of ¢ +ip at infinity. In the most im-
portant case of horizontal aerofoils the residuum itself is real and can be used directly to calcu-
late the lift. The density of drag at any point is proportional to the perpendical component of

the density of lift and is W’ =%"-A’ , from which results W=%9-A. Making use of (41) one obtains
[ ¢

= A2 1 1 . ;
2% f (G’z; (91)(13 : . (43}
1 Wy
2v% B [Res (¢ +1i¢}]

The integral in the denominator of (43) represents an area characteristic of the system of
aerofoils investigated. Frequently the easiest method of calculation is to assume from the
beginning the velocity w, at infinity to be unity.

The case of the lift continuously distributed over single pa,rts of areas is derived from the

preceding one by passing to the limit. Since the vertical velocity w disappears at all points in
the lifting surfaces, the velocity is zero at all points and the rotation vanishes.

Therefore, in the case of the most favorable distribution of lift, all of the Zongztudmal vortices
from the continuously lifting areas begin at the boundaries of the areas.

Equations (43) and (43a) remain. The distribution of lift is indeterminate to a certain
extent. On the other hand, it is possible to connect the points of the contour having the same
potential ¢ by strips of any form, and it is only necessary that the lift be always perpendicular
to the strip and its density have a constant value along the whole strip. According to equgtion
(40) this equals the difference of the potential at the contour between the two borders of the
strip. Worthy of notse is the special case in which all of the strips run along the contour, thus
coming again to the case of lifting lines. It appears that:

Closed lines have the same mimimum of drag as the enclosed areas when continuously loaded.

Especially important are those symmetrical contours which are cut by horizontal lines in
only two points. With such the limitation to vertical lift does not involve an increase of the
minimum drag. For this case it appears that:

The density of the vertical lift per unit area muat be proportional to the vertical component of
the velocity of the two-dimensional flow ai the point of the contour of the same height z. It is

W=A42 (432)

. d
%=2v,,p - (44)
The corresponding density of drag is
aw do

aF~twegz, (45)
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* 7. EXAMPLES OF CALCULATIONS. .

Examples of calculation of the previous demonstrations can he based on any celculated
two-dimensional potential flow around parts of lines or areas. The simplest flow of the first
kind is that around a single horizontal line. It leads to the problem investigated at the begin-
ning of this paper. o X '

In this case the potential is the resl part of +/p?—1, where p denotes z+z. 'The lifting
line joins the two points 2=0, = —1 and 2=0, = +1, and has the length 2. The velocity at
infinity is w=1. The discontinuity of potential along the lifting line is py— ¢, =2/T—2%. The
density of lift is distributed according to the same law, therefore if plotted over the span the
density of lift would be represented by the half of an ellipse.

The minimum drag is
1 1

W=& ol in

(46)
[f, instead of the value 2, the span had the general value b, the minimum drag would be

W=A42 . (47)

1 1
vipf, b2

. This same result has been obtained by Prof. Prandtl by another method.?
- The simplest example for a lifting vertical area is the circle. Let its center coincide with
. the origin of the system of coordinates. Then the potential of the flow around this circle is

where = /27 +22. A'o infinity Wo 1. Under the condition of and according to equatlon {40)
the denslt,y of lift is _

A’ —2u.,paé<r, +z) 49)
This results in a constant density of lift of A’=2. Therefore the drag is

R 1 A2 1
W=a 2v,%p- ff2dxdz 4 vo'pfy 8w (50)

The double integral is to be taken over the gircle. If the general case for the diameter
equal to D be considered, then the least drag is

1 1
. W=Az . v—,p—/"-' E,—z—_;_ (51)

Hence in respect to the minimum drag the c.n'cle is equivalent to a lifting line ha.vmg

a length /2 times the diameter.

A lifting circular line would have the same minimum drag as the circular area.

This result was also obtained by Prof. Prandtl by another method.* A reduction of the
origina] problem of variation to the two-dimensional flow sometimes enables a survey of the
result to be made without caleulation. For instance, let a third atrofoil be added between the
two aerofoils of a biplane having a small gap. (The gap may be about one-sixth of the
span.) Then, in order to find the most favorable distribution of lift, the double line about
which the flow occurs is to be replaced by three llftmg lines. Now, in the region of the middle
lifting line the velocity is small, even before this line is introduced. Therefore the discontinuity
of the potential along the mlddle line is very much smaller than that along the others. Hence
it results that the middle aerofoil of a triplane should lift less than the other two.

1 Fi st commnnicgtion concerning £ fxin Zeitschrift fiir Flugtechnik un@ Motorl. 1614, 8. 239, In & note by Betz.
4 Sea Technlsche Berlchte der Flugreugmeisterel Bd. IT Helt 3.
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8. PROCEDURE FOR THE CASE OF FLUIDS WITH SMALL VISCOSITY.

The preceding results do not apply so much to the caleulation of the most favorable distribu-
tion of lift as to the calculation of the least drag.  For it appears, and the results are checked
by calculation, that even considerable variations from the condition of most favorable distribu-
tion of lift do not increase the drag to any great extent. Usua.]ly the minimum drag can be
considered as the real drag of the system of aerofoils and in order to allow for the effect of
friction of the air it is sufficient to make an addition. This addifion depends chiefly upon the
aerofoil section; it also depends, omitting the Reynolds Number, only upon the area of the
wings and on the dynamical pressure. It is independent of the dimensions of the system of
wings themselves. It may be useful to have & name for that part of the density of drag, inde-
pendent of the friction of the air, which results -from the theory developed in this paper. It is
celled the “induced drag.”” Generally it is not the drag itself but an absolute coefficient which
is considered. This coefficient is defined by

EF . : . (52)

where T;is the drag previously denoted by T, ¢ is the dynamical pressure v,*.p2, and F is

the total area of the wings. Equation (43) can now be written

el F
Cyt= T_Uf—bF (53)

where ¢, is the lift coefficient I::i corresponding to ¢,. The greatest horizontal span b of the

system of wings perpendicular to the direction of flight is arbitrarily chosen as & length char-
acteristic of the proportions of the system, % is a factor characteristic of the system of aero-
foils and has, according to the preceding, the value.

<P1 . :
7‘—\/, 2 [t (54)
It has a special physical significance.
Under the same conditions g single aerojml with a span of k times the marimum span of a
system of aerofoils has the same induced minimum resistance as the system.

9. REFINEMENT OF THE THEORY.

The demonstrations gwen rest on the assumption that the velocities produced by the
vortices are small in comparison with the velocity of flight. The next assumption, more ac-
curate, would be that only powers higher than the first power could be neglected.

In this case the solutions just found for lifting elements in a transverse plane can be con-
sidered as the first step towards the calculation of more exact solutions. The following steps

raust be teken: The exact density of drag is TF’=A’—w— where » is the horizontal velocity

produced at the lifting elements by the transverse vortlces It can be calculated exactly
enough from the first approximation. Now, the condition of least drag is

w.cos B+ sin =1, cosﬁ(1+§.) (15d)

and the flow of potential, according to this condition at the boundary, is to be found. Compared
with the first approximation the density below is in general somewhat increased and the den-
sity above is somewhat decreased. The minimum drag changes only by quantities of the
second order.
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If the lifting elements are distributed in three dimensions a similar refinement can easily
be found. In this case there is to be taken into consideration a second factor which always
comes in if the differences of the longitudinel coordinsates of the lifting elements are consider-
able. The direction of the longitudinal vortices do not agree exactly with the direction of
flight, but they coincide with the direction of the.velocity of the fluid around the acrofoil.
They are therefore somewhat inclined downwards.. A better approximation is obtained by
projecting the lifting elements not in the direction of flight but in a direction slightly inclined

2w, ;

upwards from the rear to the front. This inclination is about Except for this, the method

of calculation remains unchanged.



